Будучи основательно обновленной с учетом самых последних технологий с открытым кодом, включая такие библиотеки, как scikit-learn, Keras и TensorFlow 2, книга «Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow» предлагает практические знания и приемы, которые необходимы для создания эффективных приложений машинного и глубокого обучения на языке Python
С книгой «Python и машинное обучение» Вы откроете для себя современные приемы машинного и глубокого обучения с помощью Python, используя scikit-learn, TensorFlow 2, GANs и reinforcement learning
Оригинал книги «Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow», Sebastian Raschka, Vahid Mirjalili, 792 pages, ISBN 9781789955750, December 9, 2019
(книга поступит в производство)
На русском языке книга выйдет весной 2020 года в издательстве «ДИАЛЕКТИКА»
Будет издана книга «Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow 2: концепции, инструменты и техники для создания интеллектуальных систем», Орельен Жерон, 2-е издание (в переводе Юрия Артёменко), бумага офсетная-белая, твердый переплет, полноцветное издание, ~850 стр., ISBN , «ДИАЛЕКТИКА», 2020
Благодаря серии недавних достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на основе данных
За счет применения конкретных примеров, минимума теории и двух фреймворков Python производственного уровня – Scikit-Learn и TensorFlow 2 – обновленное издание этой ставшей бестселлером книги поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем
Специалисты-практики освоят целый диапазон методик, которые они смогут быстро применить в своей работе. В части 1 задействуется Scikit-Learn для представления фундаментальных задач машинного обучения, таких как простая линейная регрессия
В части 2, которая была подвергнута значительным обновлениям, задействованы Keras и TensorFlow 2, чтобы провести читателя по более сложным методам машинного обучения, использующим глубокие нейронные сети
Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования
Что нового во втором издании книги:
• Обновлен весь код для использования TensorFlow 2
• Представлен высокоуровневый API-интерфейс Keras
• Новые и расширенные материалы, включая API-интерфейс Data, режим энергичного выполнения (Eager Execution) и API-интерфейс Estimators из TensorFlow, развертывание в облаке Google Cloud ML, обработку временных рядов, вложения и многое другое
«Эта книга — замечательное введение в теорию и практику решения задач с помощью нейронных сетей. Она охватывает ключевые моменты, необходимые для построения эффективных приложений, а также обеспечивает достаточную основу для понимания результатов новых исследований по мере их появления. Я рекомендую эту книгу всем, кто заинтересован в освоении практического машинного обучения» — Пит Уорден, технический руководитель направления TensorFlow в Google
Оригинал книги: «Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems», Aurelien Geron, 2nd Edition, 856 pages, ISBN 9781492032649, October 2019
Книга обсуждается в отдельном сообщении моего блога
Скоро в продаже уникальная книга «Машинное обучение: карманный справочник», Мэтт Харрисон, бумага офсетная-белая, мягкий переплет, ~300 стр., ISBN , «ДИАЛЕКТИКА», 2020
В книгу «Машинное обучение: карманный справочник», включены подробные примеры и комментарии, которые помогут Вам оперативно ориентироваться в основах структурированного машинного обучения(МО)
Автор, Мэтт Харрисон, предлагает ценный справочник, который Вы можете использовать как дополнительное пособие при обучении МО и в качестве удобного ресурса, когда погружаетесь в Ваш следующий проект машинного обучения. Приведенные фрагменты кода имеют такой размер, чтобы их можно было использовать и адаптировать в Ваших собственных проектах МО
Книга идеально подходящая для программистов, аналитиков данных и инженеров искусственного интеллекта, содержит обзор процесса машинного обучения и знакомит вас с классификацией структурированных данных. В книге рассматриваются различные библиотеки и модели, их компромиссы, настройка и интерпретация. Кроме всего прочего Вы изучите методы кластеризации, регрессии и уменьшения размерности
При использовании книги «Машинное обучение: карманный справочник» предполагается знание языка программирования Python. В книге демонстрируется, как использовать различные вспомогательные библиотеки Python для решения реальных задач МО
Книга «Машинное обучение: карманный справочник» не заменит учебный курс по МО, но должна служить ориентиром того, что может охватывать прикладной курс машинного обучения. Автор использует ее в качестве справочного материала для курсов по анализу данных и машинному обучению, который он преподает
Мэтт Харрисон считает, что книга «Машинное обучение: карманный справочник» — лучший сборник ресурсов и примеров для решения задач прогнозного моделирования, если у Вас есть структурированные данные
Оригинал книги: «Machine Learning Pocket Reference. Working with Structured Data in Python», Matt Harrison, 320 pages, ISBN 9781449355739, August 2019

(заказать-купить книгу по «Машинное обучение: карманный справочник» в интернет-магазине diamail.com.ua)
Книга обсуждается в отдельном сообщении моего блога
___________________________________________
РЕКОМЕНДУЮ ОБРАТИТЬ ВНИМАНИЕ на КНИГИ
___________________________________________